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An extension of the Stuart-Watson technique for examination of the non-linear 
hydrodynamic instability of time-dependent flows is proposed. An example in 
Benard convection is used to illustrate the method. Extensions to more general 
problems are indicated. 

1. Introduction 
The techniques of analysis of the stability or instability of a time-independent 

basic state are fairly well understood. On one hand one can use the energy method 
(Joseph 1965, 1966) and obtain a sufficient condition for stability against 
disturbances of arbitrary amplitude. On the other hand, the governing distur- 
bance equations can be linearized; the result is a criterion for the growth or decay 
of infinitesimal disturbances. This criterion gives a sufficient condition that the 
basic state be unstable. Corrections to the linear theory which take into account 
weak non-linearities make the approximation uniformly valid in time (Stuart 
1960b) and further are able to predict subcritical instabilities. These methods are 
particularly enlightening in the cases of convective and centrifugal instabilities 
where these various methods make self-consistent predictions (Davis 1969b). 

However, the problem of the instability of a time-dependent basic state has 
received little attention. 

The first difficulty encountered in the formulation is the decision as to a 
criterion for instability. Since the basic state can grow (or decay) simultaneously 
with the growth of a disturbance, a ‘relative’ criterion for instability is sometimes 
appropriate. These problems have been discussed by Shen (1961) and Rosenblat 
(1968). 

Rosenblat (1968) has discussed the infinitesimal stability of inviscid Couette 
flow. Other analyses (Lick 1965; Morton 1957; Currie 1967) have considered 
infinitesimal stability of viscous flows with the assumption that the basic state is 
quasi-static, i.e. that the time variation of the basic state is slow compared with 
the growth rate of a disturbance. The validity of this assumption has been dis- 
cussed by Robinson (1967). Venezian (1969) considered modulated, linearized 
thermal convection using perturbation theory. Foster (1 965a) has numerically 
integrated the linearized disturbance equations governing an impulsively heated 
layer. Yih (1968) has discussed the linearized viscous flow on an oscillating plate 
and also the difficiencies of the quasi-static approximation. Grosch & Salwen 
(1968) have used Galerkin’s method to treat the linearized plane Poiseuille flow 
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with a modulated pressure gradient. Gresho & Sani (1970) have considered 
it time modulation of a Bhnard convection layer using Galerkin's method. 
Conrad & Criminale (1965a, b )  have used the energy method to obtain sufficient 
conditions for stability in some problems associated with shear and curved 
flows. 

We here wish to make a first approach to a non-linear stability theory for 
time-dependent basic states. All non-linear theories presume the full knowledge 
of the linear theory solution which involves the solution of second-order linear 
equations with time-dependent coefficients. To avoid lengthy calculation we will 
choose a problem which does not involve this difficulty but we shall indicate the 
procedure in these more difficult cases. We shall avoid the decision of choosing a 
stability criterion by determining the time variation of any small enough dis- 
turbance from its initial value to its ultimate state. Having done this, one can 
later choose a criterion and test for stability. The determination of the behaviour 
of a disturbance for all time is made using an extension of the method of Stuart 
( 1 9 6 0 ~ )  and Watson (1960) in which the full non-linear partial differential 
equations which govern the problem are reduced to a single (or set of) ordinary, 
non-linear differential equation(s), called the amplitude equation(s). 

The object of this paper is to explain the method which is illustrated in the 
context of Bhnard convection in a horizontal fluid layer with free boundaries 
subject to heating from below. The time variation is introduced by oscillating the 
layer in the vertical direction. This is the same problem considered by Gresho & 
Sani (1970). In  order to avoid (for the time being) the difficulties associated with 
the linear problem, we take the Prandtl number P-t CO. This reduces the order of 
time differentiation from two to one and allows us to obtain closed form solutions. 

In  principle, the method is applicable to a whole class of stability problems with 
fairly general basic state time variation. No assumption is made as to the relative 
time scale of the basic state compared to the rate of growth of a disturbance. 
Generalizations are discussed. 

2. Formulation 
The following notation will be used: d is the mean distance between two infinite 

horizontal planes that are stress free and kept at constant temperatures, the lower 
at qb, and the upper at  T, with Th > T,. d-l(Th- T,) is denoted by P. The planes 
bound a fluid of reference density po. The acceleration of gravity (taken to  act 
vertically downward) is go( 1 - g ( t ) )  and a, v and K are the constant coefficients of 
thermal expansion, kinematic viscosity and thermal diffusivity of the fluid 
respectively. The dimensionless horizontal co-ordinates x and y and vertical 
co-ordinate x are referred to length d in ;  the velocity vector v = (u,v,w),  the 
temperature T, the time t and the pressure p are made dimensionless by reference 
to the scales K n I d ,  d2/n2K and poKvn2/d2, respectively. We employ the 
Boussinesq approximation under which the governing equations become the 
following : 

V +  (1  - g(t))RBk - V p  = P - ~ v .  VV, (2 . la )  
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( - i + V 2 )  8- wF, = v.V8- (WS),, (2.1 b )  

( 2 . l c )  

u,+v,+w, = 0. ( 2 . 1 4  

Here a bar indicates the horizontal average; T is the horizontal average of T and 
8 = T - T. Subscripts denote partial derivatives, R = orpg,d4/n4~v is the Rayleigh 
number and P = Y / K  is the Prandtl number. 

We restrict attention to the case of two-dimensional flow and take the Prandtl 
number to be infinite. This allows the solutions to be obtained in closed form which 
is helpful in illustrating the approach. 

Equations (2.1) then become, upon elimination of the pressure, the following: 

V ~ W  + (1 - g ( t ) )  RO,, = 0, (2 .2a)  

( 2 . 2 b )  

( 2 . 2 c )  

u, + w, = 0. ( 2 . 2 4  

We wish to solve these equations onthe domain - co < II: < co, 0 < z < n-, t 0. 
We impose the conditions on the horizontal boundaries corresponding to planar, 
stress-free, perfectly conducting planes. 

w = u , , = O = O  on z = O , n -  (2 .3a)  

and hence from ( 2 . 2 4  that 

The mean temperature satisfies 

w,, = 0 on z = 0,n ( 2 . 3 b )  

T(0, t )  = n- and T(n-, t )  = 0. ( 2 . 3 ~ )  

All dependent variables are taken to be periodic in x of wave-number or. 
To complete the specification of the problem, we must impose initial conditions. 

It has been shown (Eckhaus 1965) in the case of a steady basic state that the 
non-linear development of a disturbance is composed of two asymptotic time 
regions. In the ‘inner’ region fairly general initial values of a disturbance decay 
exponentially to zero as long as they correspond to stable modes according to 
linear theory; disturbances which grow according to linear theory survive into an 
‘outer’ region where they are followed using the method of Stuart ( 1 9 6 0 4  and 
Watson (1960). These time regions emerge from an asymptotic analysis in the 
small parameter (R - RL)* where R, is the critical value of the Rayleigh number 
R according to linear theory. We will restrict ourselves to a single wave-number 
in the x direction and hence only a single disturbance, the fundamental of linear 
theory, will grow in the ‘inner’ layer. We then will present the evolution of this 
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mode in the 'outer' region. The appropriate initial condition is the following: 

(2.4) i w(x, z ,  0) = W, cos ax sin z ,  

B(x, 2 ,  0) = 0, cos ax sin x ,  

u(x, 2 ,  0) = u, sin ax cos z ,  

where 0, = W,( 1 + 1 - q(0) )  a2R and U, = - W,a-l (compatibility condi- 
tions) and where we have anticipated the results of the linear theory and imposed 
the initial condition appropriate to the 'outer' layer. We stress that we have in 
effect considered an initial condition containing a finite number of modes allow- 
able according to linear theory but only the evolution ofthe growing fundamental 
appears to the order we are considering. 

3. Formal expansion 

0 = 0 where 

This solution satisfies ( 2 . 2 ~ )  and ( 2 . 3 ~ ) .  

apart from the initial conditions. 

The basic state whose stability is being examined satisfies v = 0, T = To(z), 

T,(x) = - (z-7r). 

The formal expansion can be motivated by considering the linearized problem 

2 
u2) 8,- . a2R( 1 - ~ ( t ) )  0, = 0, 

a +-4) a 2  0,+a, = 0, (-a 822 

(3 . la)  

(3.1 b )  

h w1 = 8,,, = 0, = o on x = ~ , n ,  ( X l c )  

where we have used that Fos = - 1 and have separated the x dependence of all 
dependent variables in the form exp (iax). 

A solution to system (3.1) can be found in the form 

(81 ,  01) = ( 4 ( t ) ,  Q,(t)) exp ( G o t )  sin z ,  (3 .2a)  

where F, and G, must satisfy 

(1+a2)2F1-a2R(1-g(t))G1 = 0 

-dG,/dt - (a,+ 1 + a2)G1+ F1 = 0. and 

The solutions then are the following: 

where 

( 3 . 2 b )  

(3.2c) 

( 3 . 2 d ,  e) 

One notices that the solutions are composed of products of two parts. The 
first is exp (sot) = exp [(a2/( 1 + a2)2) ( R  - RL)t] which is an exponential growth 



Finite amplitude instability of time-dependent flows 37 

whose growth rate can be made arbitrarily small by making R sufficiently close to 
its linear theory critical value RL. The second factor is one which is bounded in 
time whenever g is integrable on [O, 00). 

The non-linear theory to be developed uses the same spirit as that used for 
steady flows by Stuart (1960a) who reasoned as follows: An exponentially 
growing disturbance quickly invalidates the linearization. Let us replace the 
exponential by an unknown function A (t)  which grows exponentially when 
non-linear terms are neglected but which remains bounded for all time when 
modified by the non-linearities. Formal expansions are then written in powers of 
A(t). It is also assumed that 

d A / d t  = a0A-a,A3+ .... 

The coefficients ai are chosen so as to suppress certain secular terms, called 
replication terms, which would make the expansion non-uniformly valid in time. 
By analogy, we write as follows: 

B(x, z,  t )  = [A( t )  8,(z, t )  + A3(t) B3(z, t )  + . . .] cos ax + [A2(t) B2(z, t )  + . . .] cos 2ax 

+ [Ayt) o , ( Z ,  t )  + . . .I + [ ~ 3 ( t )  e4(z, t )  + ...I cos 3ax + . . . , 

+ [A2(t)w2(z, t )  + ...I cos 2ax+ [A2(t)WO(Z,  t )  + ...I 
W ( X ,  z, t )  = [A( t )  wl(z, t )  + A3(t) w3(z, t )  + . . .] cos ax 

+ [A3(t)  W4(Z, t )  + . . -1 + . . . , 
au(x , z , t )  = [A(t)u,(x,t)+A3(t)u3(z,t)+ ...I cosax 

+ [A2(t)u2(z,t)+ ...I cos2ax+[A2(t)UO(Z,t)+ ...I 
+ [A3(t)t~&, t )  + . . .] cos sax + . . ., 

T(z ,  t )  = T0(z, t )  + A2( t )  TZ(z, t )  + . . . , 
d A  
- = a,A-a2(t)A3+ ..., 
at 

with the boundary conditions 

OAO, t )  

TO(0, t )  = Z, 

= tli(7r, t )  = W,(O, t )  = Wi(7T, t) = U&O, t )  = Ui(7r, t )  = 0, 

(3.3a) 

(3.3b) 

(3.3c) 

( 3 . 3 4  

(3.3e) 

(3 .3f)  i 
 TO(^, t )  = T2i(0, t )  = T2i(nr, t )  = 0 for all t and i = 1,2,3,4,  . . .) 

and the initial conditions 

&(z, 0) = 0, sinz, w,(z, 0) = W, sin z, u l (z ,  0) = U, cos z, 

To(z, 0) = - ( 2  - 7r); B i ( 2 , O )  = Wi(Z, 0) = ?hi@, 0) = T2&, 0) = 0 (i > 1 ) .  

These initial conditions are chosen in order to excite the most unstable mode 
according to linear theory. 

These expansions are precisely those of Stuart’s ( 1 9 6 0 ~ )  theory except that the 
Bi, wi, ui and ai are now time dependent to allow for the bounded part of the time 
dependence in the linearized solution not included in A(t) .  
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A word of caution is appropriate here. The expansion (3.3) is not merely 
‘written’ but it the logical outcome of attempting a solution by successive 
approximations (Segel 1965). In  particular, the amplitude equation (3.3 e) is 
first order in time. More generally (i.e. for P finite), the amplitude equation would 
take the form 

d2A d A  
a t 2  at 

(1 +a2)-’ (1  + P ) - l ~  + - = u,A -a2(t)  A3+ .. .. (3.4) 

This is similar to that obtained by Segel & Stuart (1962) in a case when the blasic 
state is steady. 

If expansions (3.3) are substituted into (3.1), a sequence of linear inhomo- 
geneous problems is obtained. 

4. Solutions 
The order one equations obtained above are the following: 

T,(O,t) = 7r’ T,(n,t) = 0’ T,(z,O)= - (z-7r ) .  

To(x, t )  = - (2-n).  

The basic state whose stability is to be studied is thus 

(4.1) 

The next set of equations are those of O(A cos ax), the linear theory: 

(B” - ..j2 w1 - a2R( 1 - g ( t ) )  = 0, 
a22 

a,+,-a2 O,+wl = 0. (-i- az a2 1 
The solution, satisfying the boundary conditions (2.3) and initial conditions (2.4), 
are those of (3.2) and are repeated as follows: 

(01, w1) = (GI@) ,  F,(t)) sin2 (4.2a) 

and (4.2b) 

= La2’/(l + a2)21 (l - g ( t ) )  

a, = [a”( 1 + a 2 ) 2 ]  (R - RL), 
RL = (1 + ~ t ~ ) ~ / a ~ .  

( 4 . 2 ~ )  

(4.2d) 

(4.2e) 

where 

The first correction to linear theory involves terms of O(A2 cos 2ax) : 

(&-4a2)’w2-4a2R(1 - g ( t ) ) 0 ,  = 0, (4.3n) 
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subject to the boundary conditions 

8, = we = wwz = 0 on x = 0,n 

and initial conditions 6, = w, = 0 at t = 0. 

Using the solutions (4.2) we find that +(w1B,-wlZ6,) = 0. 

It is easily shown subject to the zero initial conditions ( 4 . 3 4  that 

(4 .34  

( 4 . 3 4  

w2 = u2 = e, = 0. (4.4) 

The remaining second-order terms correct the mean temperature and are 

( 4 . 5 ~ )  
a a 2  

O(A2) : 
(-it- 2% + @) T2 = Q(w14)z, 

with T2(0, t )  = T,(n, t )  = 0, (4.5b) 

and 
The solution is 

T,(Z, 0) = 0. (4.5c) 

2a2R 
~ ~ ( 2 ,  t )  = ~ , ( t )  exp ( - _____ St g(s)ds) sin 22, 

(1+a2)2 0 

dH2 1 a2R 
at 

where -+ 

and H,(O) = 0. 
Define the integrating factor J2(t), 

(4 + 2a,) t - ~ 

( 4 . 6 ~ )  

(4.6b) 

We then have that 

( 4 . 6 ~ )  

All corrections at third order are easily calculated with the exception of that 

( 4 . 7 ~ )  

1 a2R 
I12(t) = - - ___ @; J i l ( t )  Sf (1 - g(s) )  J2(s) as. 

a2 1 (-it- 

2 (1 + a 2 ) 2  0 

one of O(A3 cos ax) : 
(?? - a2) w, - a2R( 1 - g ( t  ) ) 8, = 0, 

a 2 2  

3a0+--a2 B3+w3 = -a28,+w,F,, (4.76) 

(4.7c) 

and 8, = W ,  = 0 a t  t = 0. ( 4 . 7 4  

8x2 
a 

with 8, = w3 = w,** = 0 on z = o,n 

We have simplified the right-hand side of (4.7b) by using the solutions (4.4). 
When we treat the problem of the stability of time-independent states, 

g( t )  = 0. The above non-linear theory can be shown to emerge for formal pertur- 
bation theory (Eckhaus 1965) in the parameter 6 = (R - BL)*. The O(C?~)  terms are 
given in part by system (4.7) with the left-hand side modified as follows: aO,/at is 
missing and R is replaced by RL. If one eliminates, say, w, from (4.7a, b ) ,  the 
left-hand side then represents a self-adjoint Fredholm operator subject to (4.7 c). 
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The system (4.7) then only has solutions if the new right-hand side is orthogonal 
to O,, the solution to the homogeneous problem. The constant u2 is chosen to 
assure that this condition is satisfied. We thus suppress the replication terms, i.e. 
those terms on the right that have the z dependence sinz. However, in our 
problem the presence of the ajat prevents the operator on the left from being of 
Fredholm type. 

In order to see the correct procedure for choosing a2(t), let us eliminate, ;say, 
w3 between (4 .7a ,  b )  and obtain 

2a2R 
where vl(t) = - ( I  +a2)2 a2G1+FlH2exp 

and ( 4 . 8 ~ )  

with 0, = 03$, = 8,,,, = 0 on z = 0,n (4.. 8 d )  

and 8, = 0 at t = 0. (4.8e) 

We seek a particdar solution 03(t) = cn(t) sin nz, n = 1 , 3  for those terms on the 
right of (4.8a) containing sinnz. We obtain 

where the v, are bounded in time. We introduce the integrating factor I*,(t), 

v,(s)l,(s)ds+const.I;l(t). 
1 

cn(t) = -~~ 
(++a ) 

We shall show that c3( t )  is bounded for all time showing that our statement 

When n = 3, and R > RL, 
above, that ‘ most ’ terms are easily treated, is valid. 

where p3 > 0 and p3 remains O( 1)  as R+ RL. Hence for large t ,  

c3(t) - const. I,l(t) 

so that lim c3( t )  = const. ,831 and c3( t )  is bounded for all time. 
t-tm 

On the other hand, cl(t) becomes unbounded in time as t - too .  In this case if 
R > RL, 
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where p1 > 0 and p1 + 0 as R -+ RL. Hence 
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-+a as t+oo and R+R,. 

We must therefore choose a2(t) so that vl(t) = 0. This is precisely the require- 
ment that would have to be met had ajat been absent and a Fredholm alternative 
argument been made. From (4.8b), 

(4.9) 

5. Analysis of the amplitude equation 
From 3 4, we have derived the following amplitude equation: 

d Y/dt  = yo(t) Y - yz(t) Y3+ . . . , (5.1a) 

where Y(t)  = G & ) - W ,  ( 5 . l b )  

( 5 . 1 ~ )  

(5.1e) 

The initial condition is Y(0)  = 0,. (5.lf 1 
We first note that if 1 - g(t) > 0 for all time, then yz(t) > 0 for all time, independent 
of the sign of R - RL. Thus, the non-linearities are always stabilizing. 

If we define K(t)  as follows: 

(5.2a) 

the solution of (5.1) is given by 

t 
Y(t)  = 0,2K-l(t) + 2K-l(t)  1 y&) K(s)  d s J f .  I 0 

(5.2b) 

(a )  A monotone example: g(t) = eect 

If one wishes to consider the stability of a layer of fluid whose upper boundary is 
impulsively cooled, the basic state (Foster 1965a, b )  takes the form v = 0 with 

sin nx m 

F(2,t) = -2-2 c ( -  l)n-e--nZt. 
n= 1 n 

The dominant term gives - q ( z ,  t )  = 1 - 2 e-t cos z. 

Thus, we might expect that if we let g(t) = eect in our model there may be some 
qualitative similarity with the above problem. 
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Equation ( 5 . 2 )  was thus examined with g(t) = €e-t. It is easy to see tha,t as 
t -+a, Y2(t)  -+ 8ao[( 1 + a2)2/a2R]2 = Yz when R > RL and Y2-+ 0 as t + co when 
R < RL. In  the unstable case, R > RL, Y + where Y, is the identical amplitude 
predicted when g(t) = 0,  the steady case (see Segel 1962 and note the different 
scaling). The approach to steady-state, however, is not the same. For example, 
in the steady case, Y ( t )  grows to monotonically. When g ( t )  = ee&, Y( t )  de- 
crease8 from its initial value until t = to where yo(t,) = 0 approximately. (Here we 
have neglected the contribution due to the non-linearities since we presume that 
Y(0)  is small.) to satisfies a2R 

0 €- ( 1  + a2)2  cto = a 

or 
R 

to = lne+ln- 
R-R,' 

Hence since R > RL, to +- co as R -+ RL. The initial decrease in disturbance ampli- 
tude can indeed occur in impulsive heating of fluid layer (Foster 1965 a )  and is due 
there to the finite diffusion time needed for the change in boundary temperature 
to effect an unstable temperature gradient. 

10 20 30 
t 

FIGURE 1. YN 'us. t for R = l - l R L ,  a2 = 0-5;  g ( t )  = 0.2 e-t (lower curvc) 
and for g( t )  0 (upper curve). 

A comparison of the cases g(t) = 0 and g(t) = Be- t  is given in figure 1. 
Y,(t) = Y(t)Y;1 is plotted as a function of t for a2 = 0.5, RL = 6.75, R = l.lRL 
and e = 0.2. For these values, to = 0.8. Note that the initial decrease of YN(t) in 
the time-dependent case slows the growth of YN(t) for all time. Even though 
both curves ultimately approach unity, the time it takes the lower curve to 
reach a given value can be an order of magnitude larger than in the steady 
case for certain values of parameters. 
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Infact, itiseasytosee thatifg(t)+Oast-+ co, Y(t)+Y,regardlessoftheformof 
g(t). This validates, a t  least in our problem, the usual assumption made in the 
non-linear theory of steady states, viz. if one does a BBnard experiment by raising 
the temperature in small steps, the results can be compared to a theoretical 
analysis of the steady state problem. We see here that if one waits long enough, the 
same Jinite amplitude is attained. 

( b )  An oscillatory example: g(t) = ssin (ot + 4) 
We wish to see how time modulation influences the growth of Y,(t). We stress that 
due to the simplifications of our model, the critical value RL of R according to 
linear theory is the same as without modulation. There is no ' Mathieu effect ' to 
raise or lower the stability boundary (see Gresho & Sani 1970; Venezian 1969). 

We take g(t) = 8 sin (wt + 4). As before, the linearized amplitude equation has 
points t = to at  which dY/dt = 0. These are given by yo(t,) = 0: 

a2R 

( l + a )  
€- sin (ot, + 4) = a, 

or 

Again the non-linearities are only stabilizing since if 1 - g(t) > 0, then y2(t) > 0. 

t 

FIGURE 2. Yv vs. t for g( t )  = 0.2 sin t ,  R = l . lRL ,  a2 = 0.5. 

Figure 2 illustrates the case with e = 0.2, w = I, 4 = 0, R = l . lRL and 
u2 = 0-5. YN(f) = Y(t)/Y, is plotted as a function of time. For the values given we 

to + 0.47+ 2n7r 
find that 

and to n-0.47=2n7r (n = 0, 1 ,2  ,... ). 
(n = 0, 1 ,2 ,  ...) 
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The modulated exponential growth is seen to approach a finite amplitude 
synchronous oscillation for long times. Had we considered a less restricted model, 
Mathieu effects might be present and the oscillation might well not have been 
synchronous. 

6. Discussion and conclusions 
Formal expansions of the type given in (3.3) can be applied to a whole class of 

problems. The expansion is essentially a power series in the small parameter 
(R  - R,)t which is a measure of A,  3 lim A(t )  if this exists or else in a properly 

t+oo 

defined bound on A ( t ) ,  e.g. sup I A ( t )  I. Whenever the system of governing partial 
te [O ,  m) 

differential equations is such that the Bi, wi, ui, Ti are uniformly bounded in 1;ime 
and a finite secondary state exists, R - RL can be made small enough to make 
systems of the form (3.3) well defined. In  the problem solved herein, it was 

sufficient that g(s)ds be bounded for all finite time for a secondary state to 

exist. 
The crucial observation motivating the present method is that in certain 

problems the time variation of the linearized solution could be separated into a 
product of two parts: a bounded function oft  and possibly the spatial variables 
times an exponential whose growth rate could be made arbitrarily close to zero by 
controlling the value of the external parameter R. The usual Stuart-Watson 
arguments are made by replacing the exponential by an amplitude function .4(t). 
A(t)  satisfies a non-linear ordinary differential equation whose coefficients ai(t) 
are found by requiring the solution to be uniformly valid in time. No assumption 
concerning the scale of the time variation of the basic state (say, quasi-steadiness) 
is necessary. The particular problem treated in this paper was simplified in two 
severe ways. We assumed that P-tco and that the boundary conditions repre- 
sented planar, stress-free boundaries. The first assumption made the governing 
equations first order in time while the second allowed 01, wl, u1 to be found as 
separable functions of z and t .  Let us see how the relaxation of these assumptions 
affects the procedure. 

It is worth noting here that for large P (3.3e) closely approximates (3.4) in a 
singular perturbation sense. If we define A = (1 + P)-l(1+ a2)-l, the parameter 
that multiplies dzA/dt2 in (3.4), it is easy to see that the retention of h(d2A/dt2) for 
small h gives rise to a ‘boundary layer ’ of thickness O(h)  near t = 0. This layer 
allows a condition on dA/dt(O) to be satisfied. For large times (3.3e) gives the 
correct qualitative behaviour. 

(i) Let P be finite but let the free-free boundary conditions still apply. The 
linearized problem after the x variation has been separated out has solutions 

1: 

where P-l(dF1/dt) (1  +a2)+((a,P-1+(1+a2)2)Fl-a2R(1 -g(t))Gl = 0 (G.la) 
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This system of linear equations has variable coefficients. For example, when 
g(t) = esin(wt+#), (6.1) can be transformed to a Matheiu equation and the 
solutions are periodic functions oft (if the Floquet exponents are simple) depen- 
dent on (ao, E ,  w ,  q5, R, P) and a, = ao(e, w ,  q5, R, P) is the Floquet exponent. The 
above outlined procedure goes through but the amplitude equation (3.3e) now 
takes the form (3.4) (see $3). The spirit used in the expansion is the same; the 
answer is different. It is to be expected that (3.4) would have some features of its 
solution different from that of (3.3e) since it itself can be transformed into a 
non-linear Mathieu equation. For g(t) other than above, we would require a 
solution (G,, F,) boundedin time and then again (3.4) would be the representative 
amplitude equation. 

(ii) Let P+ 00 but let the boundaries be rigid planes. The linearized problem 
has the form (3.1 a, b )  but with the boundary conditions 

8, = = Sr, = o on z = O,T. (6.2 

Due to (6.2), the x dependence is no longer separable from the t dependence. We 
must seek solutions of the form 

where Fl and G, are bounded in t. These can be found (if they exist) using, say) 
Galerkin’s method. This method is outlined in the appendix for the more general 
case of P finite. Having solved the linear problem, the outlined procedure for the 
non-linear problem seems still to be valid. The ai(t) are again chosen to make the 
solution uniformly valid in time. The amplitude equation that results again has 
the form (3.3e). 

The object of this work is to communicate the spirit of the approach which is 
much the same as has been used successfully in treating the stability of steady 
states (Segell966). The decomposition of the time dependence of the linear theory 
eigenfunctions mentioned above makes this possible. 

The author is grateful to the National Science Foundation for partial support 

S. Rosenblat and J. T. Stuart made valuable criticisms of an earlier draft of 
through grants GA-641X, GA 16603 and GP 17562. 

this paper. 

Appendix : Formal solution of the linearized problem 

disturbance equations can be written (Davis 1969a) as follows: 
Let us consider a generalized version of the linearized Bbnard problem. The 

LW - a2R&X,(z, t) q5 = 0, 

( - g + L )  q5+R*Sz(z,t)w = 0, 

where L = D2 - a2 and R*8 = 4. When Sl(x, t )  = 1 - g ( t )  and Sz(z, t)  = 1, equations 
(A 1) reduce to the example treated in the text concerning a modulated gravity 
field. When S, and S, have other forms, heat sources or time-dependent boundary 
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temperatures can be modelled. When P = 1, the small gap Couette flow in- 
stability leading to Taylor vortices is included. 

The boundary conditions are the following : 

w = O = O  on z = O , n  (A 2a) 

( A 2 b )  i D2w(0) = D2w(n) = 0, 

Dw(0) = Dw(n) = 0, for rigid-rigid boundaries, 

Dw(0) = D2w(n) = 0, for rigid-free boundaries. 

We will attempt to solve (A 1) subject to the boundary conditions (A 2a) and 
one of (A 2 b )  using the Galerkin method. (For a similar approach, see Grosch & 
Salwen 1968.) 

for free-free boundaries, 

and 

Consider the functions {an> such that 

L2@, + An Lan = 0) (A 3) 
subject to the same boundary condition as w. It is easy to show that An > 0 for all 

- n and that 

where 

Consider the functions (YnlYn = (2/7r)4 sin nz] which satisfy the same boundary 

We solve the partial differential equations (A 1) by writing 
Conditions as 8. 

m 

O(z,  t )  = X bn(t )  y"fi(z). (A 5 b )  
n = l  

We substitute the first N terms of (A 5 )  into (A 1 a) ,  multiply by 
from z = 0 to z = n and obtain: 

and integrate 

N 

n= 1 
P-lak+A,a,-a2R* bn(XIYn,@.,) = 0 ( I c  = 1,2 ,  ..., N ) .  (A6a)  

We substitute the first N terms of (A 5) into (A 1 b ) ,  multiply by Yk and integrate 
from z = 0 to z = n and obtain 

N 

n= 1 
b , + ( k 2 + a 2 ) b k - R *  I: CL,(S~@~,Y, )  = 0 (k = 1,2 ,  ..., N ) .  (h66)  

Equations (A6) have been simplified using the defining equations for On and 
u', and their orthogonality properties. 

Let 
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We then have from (A 6) that 

One possibility is that exhibited in the text where M ( t )  = -g(t)  ((Y,, Qk)) and 
N ( t )  is independent of time. When g(t)  is periodic and the Floquet exponents are 
simple, then there exist solutions of (A 7)  of the form 

(a,, b,) = e"lt(P$Q(t), F&t)) (i = 1, 2, ..., N )  

where pi is constant and Pi1), Pi2) are periodic in time at least when N is hite 
(Coddington & Levinson 1955). The approximate versions (A5) can then be 
written as follows 

where u = max (pj ) .  Thus G, and G, are bounded in time and the value of c is 

controllable by varying the value of R. Note that this is valid for arbitrary P,  not 

The non-linear stability theory proposed is valid as long as a solution to system 
(A 1)  exists of the form (A 8). Clearly M ( t )  and N ( t )  need not be periodic but could 
have more general form. For example, when the layer sustains time-dependent 
heating of a horizontal boundary (Foster 1965a), N ( t )  is independent of time 
while M ( t )  involves sums of exponentially decaying sinusoids. 

(A 8) ( 4 2 ,  t ) ,  @, t ) )  = e&(G,(z, t ) ,  G,k, t ) ) ,  

3' 

only P+w. 
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